Highest vectors of representations (total 14) ; the vectors are over the primal subalgebra. | \(-h_{6}+h_{5}-h_{3}+h_{1}\) | \(-g_{9}+g_{6}+g_{3}\) | \(g_{10}+g_{5}+2g_{1}\) | \(g_{16}-2g_{12}+g_{11}+2g_{7}\) | \(g_{15}+4g_{12}-g_{11}-5/3g_{8}-2g_{7}+5/3g_{2}\) | \(g_{24}-15g_{23}-5/2g_{20}+5g_{17}\) | \(-g_{28}+1/5g_{25}\) | \(g_{26}+1/7g_{22}\) | \(g_{30}-6/7g_{29}+1/7g_{27}\) | \(-g_{31}-10/7g_{29}+4/7g_{27}\) | \(g_{32}\) | \(g_{33}\) | \(g_{35}+g_{34}\) | \(g_{36}\) |
weight | \(0\) | \(\omega_{1}\) | \(\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(4\omega_{1}\) | \(5\omega_{1}\) | \(5\omega_{1}\) | \(6\omega_{1}\) | \(6\omega_{1}\) | \(7\omega_{1}\) | \(7\omega_{1}\) | \(8\omega_{1}\) | \(10\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(\omega_{1}-6\psi\) | \(\omega_{1}+6\psi\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(4\omega_{1}\) | \(5\omega_{1}-6\psi\) | \(5\omega_{1}+6\psi\) | \(6\omega_{1}\) | \(6\omega_{1}\) | \(7\omega_{1}-6\psi\) | \(7\omega_{1}+6\psi\) | \(8\omega_{1}\) | \(10\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0) | \(\displaystyle V_{\omega_{1}-6\psi} \) → (1, -6) | \(\displaystyle V_{\omega_{1}+6\psi} \) → (1, 6) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0) | \(\displaystyle V_{5\omega_{1}-6\psi} \) → (5, -6) | \(\displaystyle V_{5\omega_{1}+6\psi} \) → (5, 6) | \(\displaystyle V_{6\omega_{1}} \) → (6, 0) | \(\displaystyle V_{7\omega_{1}-6\psi} \) → (7, -6) | \(\displaystyle V_{7\omega_{1}+6\psi} \) → (7, 6) | \(\displaystyle V_{8\omega_{1}} \) → (8, 0) | \(\displaystyle V_{10\omega_{1}} \) → (10, 0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | \(W_{12}\) | \(W_{13}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
|
| Semisimple subalgebra component.
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(5\omega_{1}\) \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) \(-5\omega_{1}\) | \(5\omega_{1}\) \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) \(-5\omega_{1}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(7\omega_{1}\) \(5\omega_{1}\) \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) \(-5\omega_{1}\) \(-7\omega_{1}\) | \(7\omega_{1}\) \(5\omega_{1}\) \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) \(-5\omega_{1}\) \(-7\omega_{1}\) | \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) | \(10\omega_{1}\) \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) \(-10\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(\omega_{1}-6\psi\) \(-\omega_{1}-6\psi\) | \(\omega_{1}+6\psi\) \(-\omega_{1}+6\psi\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(5\omega_{1}-6\psi\) \(3\omega_{1}-6\psi\) \(\omega_{1}-6\psi\) \(-\omega_{1}-6\psi\) \(-3\omega_{1}-6\psi\) \(-5\omega_{1}-6\psi\) | \(5\omega_{1}+6\psi\) \(3\omega_{1}+6\psi\) \(\omega_{1}+6\psi\) \(-\omega_{1}+6\psi\) \(-3\omega_{1}+6\psi\) \(-5\omega_{1}+6\psi\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(7\omega_{1}-6\psi\) \(5\omega_{1}-6\psi\) \(3\omega_{1}-6\psi\) \(\omega_{1}-6\psi\) \(-\omega_{1}-6\psi\) \(-3\omega_{1}-6\psi\) \(-5\omega_{1}-6\psi\) \(-7\omega_{1}-6\psi\) | \(7\omega_{1}+6\psi\) \(5\omega_{1}+6\psi\) \(3\omega_{1}+6\psi\) \(\omega_{1}+6\psi\) \(-\omega_{1}+6\psi\) \(-3\omega_{1}+6\psi\) \(-5\omega_{1}+6\psi\) \(-7\omega_{1}+6\psi\) | \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) | \(10\omega_{1}\) \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) \(-10\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{\omega_{1}-6\psi}\oplus M_{-\omega_{1}-6\psi}\) | \(\displaystyle M_{\omega_{1}+6\psi}\oplus M_{-\omega_{1}+6\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{5\omega_{1}-6\psi}\oplus M_{3\omega_{1}-6\psi}\oplus M_{\omega_{1}-6\psi}\oplus M_{-\omega_{1}-6\psi}\oplus M_{-3\omega_{1}-6\psi} \oplus M_{-5\omega_{1}-6\psi}\) | \(\displaystyle M_{5\omega_{1}+6\psi}\oplus M_{3\omega_{1}+6\psi}\oplus M_{\omega_{1}+6\psi}\oplus M_{-\omega_{1}+6\psi}\oplus M_{-3\omega_{1}+6\psi} \oplus M_{-5\omega_{1}+6\psi}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{7\omega_{1}-6\psi}\oplus M_{5\omega_{1}-6\psi}\oplus M_{3\omega_{1}-6\psi}\oplus M_{\omega_{1}-6\psi}\oplus M_{-\omega_{1}-6\psi} \oplus M_{-3\omega_{1}-6\psi}\oplus M_{-5\omega_{1}-6\psi}\oplus M_{-7\omega_{1}-6\psi}\) | \(\displaystyle M_{7\omega_{1}+6\psi}\oplus M_{5\omega_{1}+6\psi}\oplus M_{3\omega_{1}+6\psi}\oplus M_{\omega_{1}+6\psi}\oplus M_{-\omega_{1}+6\psi} \oplus M_{-3\omega_{1}+6\psi}\oplus M_{-5\omega_{1}+6\psi}\oplus M_{-7\omega_{1}+6\psi}\) | \(\displaystyle M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}} \oplus M_{-8\omega_{1}}\) | \(\displaystyle M_{10\omega_{1}}\oplus M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}} \oplus M_{-6\omega_{1}}\oplus M_{-8\omega_{1}}\oplus M_{-10\omega_{1}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{0}\) | \(\displaystyle M_{\omega_{1}-6\psi}\oplus M_{-\omega_{1}-6\psi}\) | \(\displaystyle M_{\omega_{1}+6\psi}\oplus M_{-\omega_{1}+6\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{5\omega_{1}-6\psi}\oplus M_{3\omega_{1}-6\psi}\oplus M_{\omega_{1}-6\psi}\oplus M_{-\omega_{1}-6\psi}\oplus M_{-3\omega_{1}-6\psi} \oplus M_{-5\omega_{1}-6\psi}\) | \(\displaystyle M_{5\omega_{1}+6\psi}\oplus M_{3\omega_{1}+6\psi}\oplus M_{\omega_{1}+6\psi}\oplus M_{-\omega_{1}+6\psi}\oplus M_{-3\omega_{1}+6\psi} \oplus M_{-5\omega_{1}+6\psi}\) | \(\displaystyle 2M_{6\omega_{1}}\oplus 2M_{4\omega_{1}}\oplus 2M_{2\omega_{1}}\oplus 2M_{0}\oplus 2M_{-2\omega_{1}}\oplus 2M_{-4\omega_{1}}\oplus 2M_{-6\omega_{1}}\) | \(\displaystyle M_{7\omega_{1}-6\psi}\oplus M_{5\omega_{1}-6\psi}\oplus M_{3\omega_{1}-6\psi}\oplus M_{\omega_{1}-6\psi}\oplus M_{-\omega_{1}-6\psi} \oplus M_{-3\omega_{1}-6\psi}\oplus M_{-5\omega_{1}-6\psi}\oplus M_{-7\omega_{1}-6\psi}\) | \(\displaystyle M_{7\omega_{1}+6\psi}\oplus M_{5\omega_{1}+6\psi}\oplus M_{3\omega_{1}+6\psi}\oplus M_{\omega_{1}+6\psi}\oplus M_{-\omega_{1}+6\psi} \oplus M_{-3\omega_{1}+6\psi}\oplus M_{-5\omega_{1}+6\psi}\oplus M_{-7\omega_{1}+6\psi}\) | \(\displaystyle M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}} \oplus M_{-8\omega_{1}}\) | \(\displaystyle M_{10\omega_{1}}\oplus M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}} \oplus M_{-6\omega_{1}}\oplus M_{-8\omega_{1}}\oplus M_{-10\omega_{1}}\) |
2\\ |